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Abstract-A laminated material is one of the few composite systems for which the effective consti
tutive behavior can be determined exactly. This is well known for laminated composites with linearly
elastic phases in prescribed volume fractions. For these composites. eltplicit eltpressions for the
effective moduli have been available for at least 30 years. However. it appears that corresponding
expressions for the effective energy functions of laminated composites with phases exhibiting
nonlinear constitutive behavior are currently unavailable. In this paper. we make straightforward
use of a new variational procedure. recently developed by one of the authors. to obtain simple
expressions for the etfective energy functions of laminated composites with isotropic ductile phases
in prescribed volume fractions. The same eltpressions are given an alternative derivation. starting
directly from the classical variational principles. Explicit results are then computed for ductile/brittle
systems. such as aluminum/alumina laminates. and also for laminated composites made up of two
perfectly plastic phases with different yield stresses. The results-which are representative of other
anisotropic geometries. such as fiber-reinfore~-d solids-elthibit a strong coupling between different
loading modes that is enhanced by material nonlinearity.

I. INTRODUCTION

This work is concerned with the determination of the effective constitutive behavior of
laminated composite materials with plastically deforming phases in prescribed volume
fractions. We will deal with the exact effective behavior of such materials. and therefore.
we will exclude from our consideration the so-called approximate theories of laminated
plates (Christensen. 1979). In the context of linear elasticity. laminated composites have
heen studied extensively in the literature. Postma (1955) and White and Angona (1955)
concerned themselves with the study of two-phase. periodic laminates in connection with
wave propagation in stratified media. Backus (1962) extended their results to multi-phase.
nonperiodic composites. again in the wave propagation context. The extension to aniso
tropic layers was considered by Walpole (1969) for aligned. transversely isotropic phases.
and by Chou et al. (1972) and Pagano (1974) for more general anisotropy of the phases.
Recently. Norris (1991) has dcveloped alternative expressions for the effective moduli tensor
of laminated composites with generally anisotropic phases. exploiting the interior and
exterior projection tensors of Hill (1972. 1983). Other related works include iterative
formulae developed by Francfort and Murat (1986) in the context of linear elasticity
allowing simple expressions for the effective moduli of multi-sandwich structures (laminates
embedded within laminates of different orientations). These microstructures are of theor
etical value in the demonstration of the optimality of bounds for the effective properties of
composite materials with more general microstructures [see Kohn (1987) and Lipton
(1991 b)). In spite of the large level of activity for linear laminates. briefly summarized
above. the theory of nonlinear laminated composites does not seem to have been developed
very much. To the knowledge of the authors. the only work thus far in this direction is a
generalization of the Francfort-Murat formula for simple laminated materials with one
nonlinear phase and one linear phase due to Kohn (1990) and Milton (1990). Nonlinear
results do exist. however. within the context of the approximate laminated plate theories.

The justification of the study of nonJinear laminated composites may be partially
understood in terms of the following considerations. First. it is a configuration of practical
importance: for instance. the use of linear laminated theories in geophysical applications
is well known. but it is also known that the properties of the materials composing the
surface of the Earth may exhibit nonlinear constitutive behavior. particularly. deep within
the surface. where the materials are subject to large compressive stresses. Second. we will
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find that the laminated microstructure is illustrative of the significant coupling that may
arise in nonlinear. anisotropic materials between different loading modes. This nonlinear
coupling is also observed in other more complex microstructures. such as fiber-reinforced
composites. Third. the laminated microstructure corresponds to the simplest possible type
of anisotropic composite with nonlinear phases. in the sense that exact results may be
obtained for its effective properties. as will be shown herein. In this connection. the present
work should be considered in the light of a research program attempting to characterize
the effective properties of nonlinear composites in general. Thus far. methods have been
developed for understanding the effective behavior of nonlinear composites by Talbot and
\Villis (1985). and by Ponte Castaneda (199Ia. 1992). These methods. although different in
essence. can be shown to yield exactly the same results in some cases. but the new method
is more general than the first in that it can be used to obtain estimates uther thall Hashin·
Shtrikman bounds and self-consistent estimates [see Willis (1991) and Ponte Castaneda
(1992)]. Bounds and estimates for the effective properties of nonlinear composites with
isotropic overall symmetries have been obtained by Ponte Castaneda and Willis (1988),
and Willis (1989) making use of the Talbot-Willis method. and by Ponte Castaneda
(1991 a. b) making use of the new method. Results for fiber-reinforced composites have also
been developed very recently by Talbot and Willis (1991). and by Ponte Castaneda (1992)
and deBotton and Ponte Castaneda (1992).

The rest of the paper is structured as follows. In Section 2 the definition of effective
properties is reviewed. and their variational characterization is given in terms of both tht:
classical and nt:w variational principles of Ponte Castaneda (199Ia. 1992). [n Section J
gent:ralnonlinear laminated composites arc considered. and general formulae arc derived
in St:ctions 4 and 5 for the clkctive propt:rlies of incompressibk and compressihk laminatt:s.
rt:spt:t:tivcly. Additionally. in St:ction 6. mort: specific results arc given for two-phase lami
natt:s. In particular. tht: cast:s of ductilt: matt:rials reinforced by linearly clastic layers. and
of laminates with two perfectly plastic phases arc considered. Finally. some additional
n:lt:vant results arc given in four appt:ndices; in particular. in Appendix IV, an alternative
derivation is given of the results of Sections 4 and 5 using the classical variational principk.

2. E1TECTIVE PROPERTIES AND TIIEIR VARIATIONAL CIIARACTERIZATION

In this section. we arc interested in the characterization of the effective. or overall.
constitutive behavior of composites materials with plastically deforming phases. For our
purposes. a compositc is a heterogeneous material with two distinct length scales: ont:
macroscopic. L, describing the gross size of the specimen and the scale of variation of the
applied loading conditions, and a microscopic scale, I. characterizing the size of the typical
inhomogeneity, such that 1« L. More precise definitions can be found in the revit:w article
by Kohn (1987).

For simplicity. the constitutive behavior of the phases will be characterized by the
deformation theory of plasticity, or equivalently by nonlinear infinitt:simal elasticity. How
ever, with minor changes in notation, the results of the analyses of this paper will also be
relevant to the high-temperature creeping behaviour of composite laminates. Additionally.
the results can be used in an approximate fashion to suggest yield functions for laminated
composites in the context of the incremental theory of plasticity. as suggested by Duva and
Hutchinson (1984). and other investigators.

In the following description of effective properties. the composite is assumed to occupy
a domain of unit volume n. with boundary an. Then. the nonlinear plastic behavior of the
composite is characterized by means of a complementary-energy density function, U(x, a),

depending on the position vector x and the stress field o'(x), in such a way that the strain

field e(x) is given by

au(x, a)
e(x) = ---~---.

(,0'
(I)

Following Hill (1963). we define the e.!Jecti!'c constitutive behavior of the heterogeneous
solid in terms of the analogous relation
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(2)

where £ denotes the mean value of the strain field over n. and 0 refers to the normalized
(recall that n has unit volume) complementary-energy function of the solid when subjected
to the uniform constraint boundary condition

an == an. x E en. (3)

where n is the outward unit normal to en. and a is a constant. symmetric tensor. We recall
that under this type of boundary condition. the mean value of the stress over n is precisely a.

The elfeetire complementary energy function of the composite. O. can be obtained
directly in terms of the principle of minimum complementary energy by means of

where

(a) == min r U( x. a) dc.
11<51..1 JQ

5(a) == {a IV' a == 0 in n. and an == an on an}

(4)

(5)

is the set of statically admissible stress fields. Note that the first set of conditions in (5) are
the equilibrium equations. and that the minimizing conditions (Euler-Lagrange equations)
of (4) arc the compatihility equations. Further. composite materials typically exhibit sharp
interfaces across whidl the material properties arc discontinuous. although the phases are
as,l'lImec!to be perfectly honded. Therefore. across such interfaces. the equilibrium equations
must he reinterpreted in terms of continuity of the traction stresses. and corrcspondingly
the compatihility equations must he replaced by continuity of the tangential components
of the strain tensor.

We note that. given relation (2) in terms of D. the problem of characterizing the
effective hehavior of the composite reduces to that of determining D. However. while in
principle 0 can be computed from (4); in practice. this variational principle is not very
useful for two reasons. First. usually the microstructure of a typical composite is not
completely specified; and second. the problem described by (4) is a nonlinear one on
account of the nonlinear behavior of the constituent phases. For the problem of interest in
this paper. the first issue is not a concern because the phase volume fractions suffice to
characterize the microstructure of a laminated composite material. However, the second
issue presents real ditficulties. For this reason, we describe next a new variational principle.
introduced recently by Ponte Castaneda (199Ia), which deals precisely with the problem of
constitutive nonlinearity. This is accomplished by expressing the effective energy function
of the nunlinear composite in terms of a variational statement involving the effective energy
functions of the class of linear comparison composites. Thus, the new variational principle
allows the extension of well-known results for linear composites to corresponding results
for nonlinear ones. rn this paper, we will make use of this variational principle, and of well
known results for the effective properties of linearly clastic laminates, to determine the
effective constitutive behavior of ductile lamin'ltes. Before proceeding with this task. we
briefly review the new variational principle.

The new variational principle for the effective energy of the composite 0 is obtained
by means of the Legendre transformation. applied to a modified set of variables. We will
assume that the heterogeneous solid is locally isotropic. such that

(6)

where t/J is a non-negative function. satisfying the condition that I/J(X; O. 0) == 0 for all x.
Additionally. t/J is convex in the variables kf. (A2)]
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(7)

denoting the mean and ejfectit'e (in their plasticity usages) stresses. respectively. where
(J' = (J - (Jml is the stress deviator tensor. We note that form (6) is not the most general form
for the energy function of a nonlinear isotropic solid (we could also have dependence on
the determinant of (J). but this form is still general enough to cover the usual plasticity
models of interest here. Further, we will assume that the growth in C as the magnitude of
the stress tensor becomes large is stronger than quadratic. This is of course consistent with
the ductile behavior of the material.

The new variational principle is obtained then in terms of the following expression for
the energy-density function of the heterogeneous solid. namely.

(8)

where Vo is the energy-density function of a linearly elastic comparison solid with shear
modulus Pl). and bulk modulus 1\0. such that

(9)

and where

( I 0)

(Note that the maximum in the above function is usually bounded, bel.:ause of the stronger
than quadratil.: assumption on V.) These expressions arc obtained by means of the I.:hanges
of variables. I'e = !e" and ('1lI = (J',~" whil.:h lead to the definition of a nonnegative function I
sUl.:h that

( I I )

Then, expression (10) is nothing more than the Legendre dual of I; in fact. we have that
V(x; Jl o• 1(0) =f*(x; {Ie' {1m), with Pe = 1/(2po) and {1m = 1/(21\0)' Here, f* is the Legendre
transform of}: given by

( 12)

and (8) is a statement of Legendre duality jilr ('Of/cex f (i.e. f** =I but written in terms
of Vand V). For details, we refer the reader to Ponte Castaneda (1992).

The new variational principle is then obtained essentially by inserting expression (8)
for V into the principle of minimum complementary energy (4). and interchanging the
order of the minimum over the set of admissible stresses with the maximum over the
comparison moduli. The result may be expressed in the form (Ponte Castaneda. 1992)

(13)

where

(14 )

is the effective energy of the linear comparison composite. We emphasize that expression
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(13) is a variational principle in its own right since it involves an infinite-dimensional
optimization over the set of nonnegative functions J-lo(x) and "o(x). Thus, even if we had
an explicit expression for the effective energy function of the linear comparison composite
L\ [not an easy calculation in general for arbitrary J-lo(x) and "o(x)], the above variational
principle would still be difficult to implement. However, we will see that for a laminated
composite, the above problem simplifies dramatically. Similarly, it was shown by Ponte
Castaneda (199Ia, 1992) that the above variational principle can also be utilized in an
approximate fashion to compute bounds for the effective properties of nonlinear composites
with more general microstructures. Additionally, in the same references. dual versions of
(13) are also given in terms of the minimum potential energy of the composite; however,
in this paper we prefer to use the above formulation due to the fact that it is easier to
express the stress/strain relation for a ductile material in terms of the complementary
energy-density function U than in terms of its Legendre counterpart. the energy-density
function W = U*.

3. APrUCATION OF THE NEW VARIATIONAL PRINCIPLE TO A NOr"UNEAR
LAMINATED COMPOSITE

In this section, we specialize the general formulation of the previous section to the
case of laminated composites. Such materials consist of n homogeneous. isotropic phases
occupying nonintersecting layered regions Olrl(r = I, 2, .... n), with union 0 and with
normal n. The complementary energy-density function for the laminated material is then
expn:ssihlc in the form

•
U«(T. x) = L Xlrl(x'n)u(r'«(T).

,.,. I
( 15)

whae X1rl(X' n) (equal to I for x in phase r. and 0 otherwise) is the characteristic function
of phase r. and Ulrl«(T) = II/r,( re, (Till) is the corresponding homogeneous, isotropic energy··
density function. Also the volume fraction c,r l of each phase is determined by the cor
responding charactl.:ristic functions X(rl via the relation

( 16)

We remark that a laminated composite with perfectly honded, isotropic phases possesses
trunsl't'rsely isotropic symmetry (with transverse direction n). In some sense. it represents
the simplest composite material with transverse isotropy; other examples of practical
importance include fiber-reinforced materials with isotropic constituent phases. These will
be considered elsewhere. Because of the particular type of anisotropy involved in laminated
composites. we have included in Appendix A a brief summary. largely after Walpole (1981).
of the appropriate invariants and other useful definitions for transversely isotropic materials.

The computation of the el1i.:ctive energy-density function of a laminated composite is
made easy by the following property of laminated composites. [I' the thickness of the typical
layer is small compared to the size of the laminate (i.e. if the laminate-linear or nonlinear
is a cumposite in the sense defined in Section 2), then. away from a boundary-layer region
close to the boundary of the composite, the fields are constant within each layer (a different
constant in each layer). Therefore. the problem of determining the effective energy function
of a laminated composite reduces to that of determining the constant fields within each
phase of the composite by imposition of th_c appropriate jump conditions (continuity of
traction stresscs and tangential strains) across the interfaces between the different layers.
as well as the averaging conditions stated in Section 2. Thus. the problcm of determining
the effective energy function of a laminated composite, unlike the corresponding problem
for a general composite, simplifies to an algebraic one. Although, in principle, the resulting
problem can always be solved; in practice, it may be difficult to obtain explicit results

SAS 29: 19-8
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because the jump conditions take the form of complicated sets of nonlinear algebraic
equations. However. if the composite is made up of linear phases (with quadratic energy
functions in each phase). the jump conditions are also linear and they can be solved in
closed form. as discussed in Section I.

The results for the effective energy functions of linear laminated composites are given
in the next two sections; in the balance of this section. we make use of the new variational
principle (13) to determine an exact expression for the effective energy function of a
nonlinear laminated composite O. written in terms of the effective energy functions 00 of
the class of linearly elastic comparison laminates. This is accomplished by noting that. for
a laminate. the minimizing comparison moduli functions ,uo(x) and "(I(x) in (13) must be
constant within each phase. Therefore. it suffices to optimize with respect to the set of
constant [over each phase r(r = I. .... n)] comparison moduli. ,u\ll and "\l)' Thus. we have
that

where. from (10).

D(iT) = max {O (iT)- ~ C('IVI'I(I{II."I.»)}.
l~) .\'1 0 ~ tOO

~o ·~o > 0 .s::::lt I
( 17)

( 18)

and where 00 is the cfTective energy-density function of a linearly clastic laminated material
made up of n phases in volume fractions C('i. with shear and bulk moduli. Jt\;1 and ,,\;1.
respectively.

On the face of it. expressions (17) with (18) for the efTective energy function of a
nonlinear laminated composite do not appear to otTer much of an analytical advantage
over the standard procedure of determining the stress fields within each phase (by solving
the appropriate nonlinear jump conditions) and putting them directly in the complementary
energy principle (4). This is due to the large number ofoptimizations involved in expressions
(17) and (18) (i.e. a total of 4/1 optimizations for an n-phase laminate). However. we shall
see in the nex.t two sections that application of the particular form for the efTective energy
function of a linearly clastic laminate in (17) leads to a simpler optimization problem for
the eflcctive energy function of the nonlinear laminate. Further. we observe that. from a
computational point of view. it is generally easier to minimize (or maximize) functions than
it is to solve nonlinear sets of equations. and therefore. the methods developed in this paper
arc computationally superior to the standard procedure of solving systems of nonlinear
equations (arising from the jump conditions). In Section 4. we begin by considering the
simpler case of a laminated composite with incompressible. isotropic phases. and in Section
5. we tackle the more complicated problem of a general laminated composite with com
pressible. isotropic phases.

4. TilE INCOMPRESSIBLE LAMINATED COMPOSITE

In this section. we deal with the special case of laminated composites with incom
pressihle. isotropic phases. In this case. the encrgy-density functions of each phase take the
simpler form UV)(a) = ",<,j(re>. Then. relations (17) and (18). ex.pressing the effective energy
function 0 of the nonlinear laminate. reduce to

(19.20)

where 00 now refers to the effective energy-density function of a linearly elastic laminated
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material composed of n incompressible phases with shear moduli 11~) in prescribed volume
fractions c,r l •

The effective energy-density function of the linear (incompressible) comparison lami
nate Do may be computed from the general results of Walpole (1969). specialized to the
case of incompressible. isotropic phases. We obtain

U- C-) I (-' .,) -(I )-'o (1 = ;;;-:-- !p+!j + .,~. !~ .
....110 ....110

(21 )

where the overbars on the moduli denote volume averages (e.g. flo = L;. I c(,) 11\;1). and
where in. i p and f d arc the three transversely isotropic invariants of the applied stress tensor
it (which is trace-free) corresponding to the three independent modes for an incompressible.
transversely isotropic. linear material (sec Appendix A and Fig. I). They arc the transverse
shear stress [(A5),l. the longitudinal shear stress [(A5)~l and the devi~ttoric stress [(A5) 1.1 and
(1\ 12)J. respectively. We note that the three independent modes for a general incompressible.
transversely isotropic material reduce to two independent modes for an incompressible
laminated composite (since the transverse and deviatoric modes have the same elTective
response). Note further that. because of the identity f; = f; + iJ + f~ from the section on
incompressible materials in Appendix A [(A6hl. we arc able to rewrite the first term in
brackets in (21) in the form (f; - i~).

With expression (21) for 00' we can now return to the computation of 0, implied by
(19). In this connection, we tind that the following identity, proved in Appendix B, is useful
in reducing the number of optimizations. namely.

I . {I\ C(·'I '}-=- = mill '\' - (I-W('I)- •
1'1 - i..J (.\")llo w.w_O .,.dlo

(22)

where the (constant) optimization variables W(rl(r = I. ... ,n) are required to satisfy the
constrainL OJ = O. Then, substituLing (21), together with (22), into (19) leads to the result

(23)

where

(24)

We note that. by definition. the functions - v(rl(Il~) = - (/('I)*C I/C21l~1» are concave in
1/(Il~I). and similarly the variables t(r) are convex in w(r). Therefore. by the Saddle Point
Theorem (Rockafellar. 1970. Corollary 37.3.1). we are allowed to interchange the order of
the maximum and the minimum in (23). Further. it follows from (8) [assuming convexity
of prj. where prl(ve) = ",(rl(te) with Dc = t;; see (II)} that
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(25)

Therefore. we conclude from (23) that

O(u) = min
",1'1.(;)=0

(26)

where the variables ,i'l are given by relations (24). Evidently. this form is much simpler
than the original form given by (19) and (20): it involves an II-dimensional constrained
optimization in place of the 211-dimensional optimization problem implied by the original
form. However. the linear constraint (u = 0 for the II optimization variables w")
(r = I. .... II) can be embedded into the optimization problem (26) by letting the 11th
variable WI"1 be expressed in terms of the other 11- I variables ur (s = I..... II - I) via

(27)

With this moditlcation. the problem (26) reduces to an (1/ - I)-dimensional optimization
problem over the unconstrained variables (I)") (.I" = 1..... 1/ - I). For instance. for the case
of a two-phase laminated composite. the problem (26) reduces to the one-dimensional
optimization problem

which is expressed in terms of one (unconstrained) optimization variable w. Here. we have
made the following identitications. uP 1 = ("I ~I(I) and u/ ~I = - ell 1(1).

Finally. we remark that simple expressions for the efrective stress/strain relations of
the nonlinear transversely isotropic laminated composite may be obtained by means of the
results of Appendix C. These relations may be written in terms of the incompressible.
transversely isotropic invariants of the average strain h:nsor ii. namely. the transverse shear
strain }'r. the deviatorie shear strain I'J. and the longitudinal shear strain 'In. These strain
invariants are defined in Appendix A. and arc completely analogous to the corresponding
(incompressible) transversely isotropic invariants of thl.: aVl.:rage stress. Thus. with the help
of relations (C7). we may write

[
" 1 (ii"") Jf_, = ".(rl(l_ ;irl)~ V ("d) ,(

IJ L ( (.) 'Ir) d (,) r ') .
,. I " -

(29)

where i lr ) = ,lr)(ciJ'r». and where the variables ojlr) arc the optimized values of the wlr)

from (26). We note that for the nonlinear laminated composite. there is full coupling
between all the distortional (shear) modes. This is ditlcrent from the situation for the
corresponding linear laminated composite [see (21 »). where all three modes are uncoupled.
As we will see in the ensuing discussions. this inter-mode coupling is one of the intrinsic
features of laminated (and other anisotropic) nonlinear composites.
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With the insight gained in the previous section. we attempt in the present section to
obtain corresponding results for n-phase laminated composites with nonlinear. isotropic.
compressible phases. In this case. we can apply the results (17) and (18) from Section 3
directly: we only require an expression for the effective energy function 00 of the linearly
elastic laminate with isotropic. compressible phases in prescribed volume fractions. This
energy function may be computed directly from the results of Walpole (1969) for the
transversely isotropic moduli of linearly elastic laminated composites. The final result may
be written in the form

(30.31 )

with '10 = 9"0Ilo/(3"0+41ln). and where rip. rin. f pand f n are the four transversely isotropic
invariants (up to quadratic in order) of the applied stress a. They denote. respectively. the
in-plane hydrostatic stress. the normal tensile stress, the transverse shear stress and the
longitudinal shear stress (see Appendix A and Fig. I). The reason behind the above splitting
of 0olies in the similarity between the first part of (30), as given by (31). for the distortional
(shear) modes of the compressible laminate and relation (21) for the incompressible com
posite (with f;+fJ replaced by f;). Thus, it follows immediately that

(33)

where the w~,) arc the corresponding optimization variables. and they arc subject to the
constraint ujo = O. The second part is more complicated, but it can be shown by straight
forward computation that. if rip :f. o. 02(a) may be represented in the form

- {. c(" • c(') }
U,(a)= min "-~.-.··[ri -(I-W("I)ri]2+" __ [Iri +2(I_w(Sl)ri]2- ,,' _ L. 6 (,) n In p L. 2 ,('I J n 3 m p •

w••w.-O s- I J.lo .,_ I "0
(34)

where the optimization variables w:~) are also subject to the constraint wm = O.
By putting together relations (33) and (34), we arrive at the following expression for

the linear comparison laminate

(35)

where

j
..-.__._--_._---_._--- --.._-----._-----

r(" = (I - u/') 2f2 + f2 + 1[Ii _ (I _ u/")ri ] 2c c p nJn mp'

We note that this result is reminiscent of the type of result that one would expect to arise
directly from the principle of minimum complementary energy. That this result is indeed
directly obtainable from the principle of minimum complementary energy is demonstrated
in Appendix D.

Then. following a procedure similar to the one followed in the development of
expression (26) for the effective energy function of the nonlinear. incompressible laminated
composite. but making use of (17) and (18). we arrive at the following expression for the
effective energy function of the nonlinear laminated composite
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min {~Ch'l/!"'(rl.".O"I")}.
I"~'I .W:~I ~~l t:: m

(37)

where r~" and O"~' are given by (36). Here, we have made use of the Saddle Point theorem
allowing the interchange in the order of the minimum over the w~", w~' variables with the
maximum over the comparison moduli .u\;' and K\;'. We note that form (37) for the effective
energy function Cof the nonlinear laminated composite is a direct generalization of form
(35) for the effective energy function Do of the linear comparison laminate. We also note
that while the distortional and dilatational modes are not coupled in the linear laminated
composite [although the dilational modes are coupled among themselves. as (32) shows].
all four modes arc strongly coupled for the nonlinear laminated composite.

Having obtained the simple form (37) for the effective energy function of a nonlinear
laminate by means of the new variational principle. it can be demonstrated that the saml'
result may be obtained directly from the principle of minimum complementary energy. This
alternative derivation of (37) is given in Appendix D. We note in this connection that whilt:
the derivation of Appendix 0 may be physically more appealing than the above derivation.
in this paper we have chosen to emphasize the derivation based on the new variational
principles for the following reasons. The derivation based on the principle of minimum
complementary energy depends on the fact that the fields arc constant within ditl"crent
phases in the laminated composite; however. for a more general microstructure. such as a
fiber-reinforced composite. the fields arc no longer constant within the phases. and the
minimum complementary energy approach would not work. On the other hand. deBotton
and Ponte Castaricda (1992) have made usc of the new variational principles to obtain
exprl'ssions analogous to expressions (36) and (37) for the effective energy functions of
nonlinear fiber-reinfon.:ed composites. Thus. the approach based on the new variational
rrilH.:irles is more general and that is the reason for emphasizing the new approach. even
in the simrle case ofa laminated comrosite. where the new arrroach is not strictly required.
In Arrendix D. we also show that an alternative fortn of (37) is rossiblc. which is not
suhject to the n\. I- () restriction. although we note that the above form is still valid in the
limit as n\. -. () (it is just not valid in a rointwise sense at lip = O. because the ortimizing
variables W:;,I bCCOllll: unboul1lkd in that limit).

The new rcrresentation for the efl"cctivc energy function of a nonlinear laminated
comrosite 0 can be seen to involve only a 21/-dimensional optimization rroblem with two
linear constraints. This is major reduction in order compared with the original exrn:ssions
(17) and (I X) involving a 41/-dimensional optimization problem. However. as noted in the
rrevious section. further reductions arc possible [to a 2(1/ - I)-dimensional ortimization
rroblem] by embedding the linear constraints directly into the optimization rroblern (37).
For example. for the case of a two-phase composite. we obtain a result involving only a
two-dimensional optimization probkm prescribed in terms of the variables We. W", via

['(iT) = min ~cllll~'IJ(r~ll. (J':I1IJ ) +c'21'V2'(r~21. (J':.;I);,
r'1e,I'I",

(3X)

where r~". a:,~1 and r~21. 0":.;1 are gin:n by relations (36) with VJ~II = ('I "UJe • (!J~~I = -C'I'We •

(J):n" = Cl~)(:)lIl and (1):1;) = _('II)O)m'

finally. we remark that simpk expressions for the effective stress/strain relations of
the transversely isotropic laminated composite may be obtained by means of the results of
Appendix C. These may be written in terms of the transversely isotropic invariants or the
average strain tensor e. the in-plane hydrostatic strain I:p • the normal tensile strain /:11' the
transverse shear strain {~p. and the longitudinal shear strain (~n' These are defined in Appendix
A. and are completely analogolls to the corresponding transversely isotropic invariants of
the average stress. Thus. with the help of relations (C8), we may write

I " [ ~.fYI I c,lyl ]
~ __ "" ,fr) "(1'1 ~_(.'I'_(.(r) "(r» [(1- "'(r)- _ -j.__'1'_(.-(r) ... t r )
Cp -

6
-LC (I-wm ) '-:ll" re.O"m + W m O"p O"n '('):ll" re'O"m •
,_I lO"m 'C e ere

I " [',1,1'1 1 c,I,I" ]
- "(,, G'I' "(" "I" [ "(,j - - j 'I' (,(,) 'I')~

F. n = 3- L c ~ ('C e .O"m) - (I-wm )O"p -O"n r"I" :lr('1 'C e 'O"m •
r~l cam c lie
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(39)

where f~) = r~)(w~). w~'). a~) = O"~'(w~). and where w~l, w~) are the optimized values of
w~rl. w~' from (37). We note that in this form. the coupling between the distortional and
dilatational modes in the nonlinear material become evident since Yp. i~n depend on an. ap•
and. conversely. in. i p depend on f n• f p•

6. APPLICATION TO LAMINATED COMPOSITES WITH POWER-LAW CONSTITUTIVE
BEHAVIOR

[n this section. we specialize the results ofSections 4 and 5 for three classes of laminated
composites. The first subsection deals with the case ofan incompressible laminated material
made up of layers of a phase with "linear plus power-hardening" constitutive behavior.
reinforced with stiffer layers ofa linear-elastic material. In the study of these incompressible
laminates. we will emphasize the coupling between different distortional loading modes
arising as a consequence of nonlinearity and anisotropy in the laminates. The second
subsection is dedicated to the study of a compressible. aluminum/alumina laminate. and
the understanding of the dilatational modes is emphasized in this case. The third subsection
deals with an incompressible laminated composite made up of two rigid/perfectly plastic
phases with different yield stresses: it is interesting to note that. in this special case.
completely explicit results are obtained for the effective yield function of thc laminate.

6.1. Iflcompressihle laminateel composites
In this subsection. we consider an incompressible. two-phase laminated composite

characterized by the following constitutive laws for the two isotropic phases. Phase I is
governed by "linear plus power-hardening" constitutive behavior described by the energy
density function

l{I(I'(r.) =fh
'. Fl')(s)ds. where F(I)(S) = £o{:o + [(:J-(::JJH(S-O"y)}.

(40,41)

Here H is the unit step function (equal to 0 when S ~ O"y and to I otherwise). and eo. 0"0 are
strain. stress normalization factors such that 0"0/£0 = 3// ". with J.l( II denoting the shear
modulus of phase I. Then. the function F( I) represents the uniaxial stress/strain relation of
phase I under simple tension loading conditions. Thus. the behavior of phase 1 is linear
when the uniaxial stress is lower than the yield stress. O"y. and is linear plus power-hardening
for stresses larger than O"y. The factor J3 in (40) is needed in order to fit the isotropic stress
invariant r. to the uniaxial case. Phase 2 is linear and governed by the quadratic energy
density function

.1.(2)( ) _ I 2
'I' r. - 2J.l12l r•• (42)

where J.l(2) is the shear modulus of the phase.
With the above constitutive behavior for the two phases (1 and 2), which are prescribed

in volume fractions (1 _e(2
» and eI2

', respectively, the effective energy-density function of
the incompressible laminated composite may be expressed in dimensionless form via the
relation
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1J(:'JIJ.lI!!~

c'1J=a~
n=}

r Ir 3 .--~---.-~--,----.----r-~-,--~---.
• 0

2
fir =0

o i

r/r =5
o

Fig 2. Th~ rd:ltl\'ns o~tw~~n th~ longitudinal sh~ar stress f, and stram ;'0 of th~ lll(omrr~sS\ok.

l1(>nlin~ar laminate (continuous lines). and the reference linear laminate (short-dashed lines) l'.>r three
ditlcrent values of the other stress mude f; f· I" = O. f I" = 2 and f I" = 5.

(43)

whl'n; thl' spl'l'itil' form of thl' function G is dl'll:rmincd from (2~). and [II = ,; ~!TII'

~'11 = ,/';1:". so that r".~'11 = 2/( I), Thl'n. thl' relations betwl.'l.'n the thrcl.' (incomprl.'ssihk)
transversely isotropic stress invariants and the corrl.'sponding strain invari:tnts may he
wll1putl.'d from (29). Thcsl.' rdations arc prl.'sentcd in Figs 2 5 for thl' following valul's of
till: four paramcters appearing in (43):

I. 1/ = 3 and ,( ~)
( = 0.2.

We recall that therl.' arc only two independent modl's fur the incompressihk laminated
composites; they arc the longitudinal shear stress in and the following comhination of the

other two shl'ar modes ...../ i~ +i~ (i.l.'. thl.' transverse and deviatoric shear 1110dl's. res pel:
tively). Fur simplicity. we will refer to this combinati()l) of the two l11odl.'s at f and to the
corresponding com bination of the strain modes. ,/~~~+ }~. as ~~. Thus. it sutlices to l:onsider
the rdations among the stress modes ill' i and the strain modes ~~n' ~~ in onkr to have a
l:Ompkte Jl'scription of the l:onstitutive bl.:havior of the inl:ompressible laminate. In urder
to highlight the drect of nonlinearity. results arc included in Figs 2~5 in thl.: form of short-

J1(!)/J1(1)~5

d1)=o,:
n=}

r Ir =I
• 0

r Ir = 05
• 0

5

10

15

I
I r /yo o~...L..--'~-~~2-~-':':'3-~-4~~--!5' 0

Fic. J. The inter-rdations hetween the shear stress f and the longitudinal shear strain ;'" of the
in;ompressiolc. nonlinear laminate (continuous lines). and the reference linear laminate (short·
dashed lines) f('r two dilTcrent values of the longitudinal shear stress :,; ro I" = O.S and f, c" = 1.
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0.5 1.5 2
y/y

2.5 •

Fig. 4. The relations between the shear stress f and the corresponding shear strain y of the
incompressible. nonlinear laminate (continuous lines). and the reference linear laminate (short
dashed lines) for three different values of the longitudinal shear stress fn; fn/t Q = O. fn/to = 0.5 and

- f _.,
tT'l,'to - ~.

dash~d curves for a linear laminated composite with the same shear moduli as the nonlinear
laminale. Thus. the phases of this linear reference laminate are similar to those of Ihe
nonlinear one with the only ditference that in phase I (Jy = 00.

Figure 2 shows a plot of the longitudinal shear stress f n versus the longitudinal shear
strain ,'n for three dillcrent values of f (f/ro = O. 2. 5). We observe that when there is no
preloading of the laminate (f/ro = 0). the behavior of the stress/strain curve of the nonlinear
laminate is initially the s.lme as that of the reference linear laminate (short-dash line) until
phase I yields. After yielding. the two curves diverge with the nonlinear phase controlling
th~ behavior for l'lrge longitudinal shear stresses. That this should be so is seen from the
fact that shear parallel to the layers should be controlled by the less stiff phase (in this case.
the nonlinear phase). The ellcct of increasing f is to saturate the linear range of phase I.
forcing the ellcctive stress/strain curve of the laminate to be controlled by the nonlinear
phase even for small values of the longitudinal shear stresses f n •

Figure 3 shows a plot of f versus the longitudinal shear strain y" for two different
values of the longitudinal shear stress (f,,/ro =0.5. I), and serves to emphasize the coupling
between the two shear modes. Thus. a small preload in the form of a longitudinal shear
stress f n applied to the nonline'lr lamin'lte can lead to large increases in the longitudinal
strain ,'" as the other shear stress mode f is increased; in fact. the growth is unbounded and
can be shown to be proportional to (f/ro)ln- Il/n.

fir 20 r--~-r~-""--r--r--'-""-~-r~--,. " I'pJI,J'J=S

,/2)=0.2
n=J

15

10

5

i/T =05. . ilT = /•

o y/y
o 0.2 0.4 0.6 0.8 I 1.2·

Fig. 5. The inter-relations between the longitudinal shear stress f n and the shear strain i' of the
incompressible. nonlinear laminate (continuous lines). and the reference linear laminate (short

dashed lines) for two different values of the stress mode f; fit. = 0.5. and fit" = 1.
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Figure ~ shows a plot of the shear stress f versus the shear strain ~~ for three difTerent
values of longitudinal shear stress Tn (Tn To = 0.0.5. I). We observe that when there is no
preloading of the laminate (Tn To = 0). the behavior of the effective stress strain curve of
the nonlinear laminate is initially the same as that of the reference linear laminate (short
dash line) until phase I yields. After yielding. however, the two curves diverge with the
linear phase controlling the behavior for large shear stresses T. I n fact. it can be demonstrated
that the slope of the stress strain curve in question reaches an asymptotic value of 2C 'CI II CI

(corresponding to a linear Voigt estimate with pi II ~ 0) as the shear stress f becomes large.
Evidently. the \veaker nonlinear phase is acting as if it was not present for large enough T.
The effect of increasing Tn is then to saturate the linear range of phase I. reducing the dTect
of the nonlinear phase on the etTective stress strain dlrve of the composite I the laminate
behaves almost linearly with modulus C'CII('c, for sul1iciently large preload Tn)' That the
nonlinear laminate shl)uld be controlled by the stitrer linear phase for large magnitudes of
the transverse shear stress f r (and fixed longitudinal shcar stress fn) is easy to visualize. but
that exactly the same behavior should be observed for the deviatoric mode f d (the other
component of f) is perhaps less intuitive. The reason. however. is related to the Poisson
etTect. Thus. for exampk. if the laminate is compressed along the normal direction (which
may seem to be controlled by the less stitf nonlinear phase). tensile strains ar;; set up in the
plane of the layers. which must be continuous across the phases. thus providing the required
stitlening effect in the normal din:ction (because the linear phase controls the in-plane
behavior of the laminate).

Figure 5 shows the relation between the longitudinal shear stress mode Tn and the
strain mode ~~ for difTerent values of the shear stress f (f To = 0.5. 2). We observe that while
there is significant coupling between the two modes (by comparison with the linear rderence
laminate). the coupling is not as significant as in Fig. ). Thus. the shear strain}' reaches a
maximum level for a given shear prdoad T as the longitudinal shear Tn is increased. This is
because the nonlinear phase is dominated by the linear phase in this mode of deformation
as observed previously in connection with Fig. ~. Thc clrect of incrcasing prdoad f is to
increase (in hoth absolutc and rclativc terms) thc increments in the shear strain ~~ with
incrcasing shear strcss Tn.

6.2. Thl' allll/lil/lII/1/alulI/il/a lamil/atl'd cOlI/posite

I n this subsection. we demonstratc the hcha viOl" of a nonlinear. comprcsslblc laminatcd
composite made up of aluminum layers reinforced with layers of alumina. Aluminum is a
ductilc material with uniaxial stress;strain curvcs that can be approximated by a "Iinear
plus-power"' law with hardcning cxponent 1/ varying bctwecn ~.2 and 5.:-:. Thus. we will
assume the following form for the cnergydensity function of the aluminum layers (phasc
I)

i
,l:

F'II(s)d.I+") .III U ,;"
II _1\

where F' II is the same as in (41). and thus the only dillerence betwccn (40) and (44) is the
compressibility of aluminum accounted for in (44) through the bulk modulus ,,' II. Alumina
(phase 2) is a brittle material that behaves in a lincar fashion up to thc point of failure. Its

energy density function is represented by

(45)

where IL( ci and "ICI denote the shear and bulk moduli of the alumina, respectively.
With this choice of 1/1' Il and 1/1'") (for the behaviors of the two phases). the effective

energy-density function of the composite can be repn:sented in dimensionless form via
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p 0
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,111=0./

3
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/JIZI/p/" = 6

';" =0.35

';ZI =0.15
11=5

£/£
2 3 4 5 p 0

Fig. 6. The relations betw~'Cn the in-plane hydrostatic stress t1r and strain i r of the compressible
laminate (where no other stress modes are present) for three ditTerent values of the volume fraction

of the linear phase. ct~l.

D(~~ _ G{~ ifn !I' Tn. (Jy Jt(~) (I) ,(~) .(~)}
- .......... (I ~ .. V .. \- .. n. (. ..

TOI' O (Jo (Jo To TO (JO It
(46)

where G is obtained from (38). To = j1(Jo, Yo = Jlc(), such that To/l'o =21t( I), and v( I), vIZ)

arc the (dimensionless) Poisson's ratios of the two phases defined by

In the results to follow. we will make the following choices (which are representative of the
aluminum/alumina composite) for the material parameters in (46) :

I. VII) = 0.35. v(~) = 0.25 and n = 5.

The results arc presented in Figs 6 --9 in terms of plots of the four transversely isotropic
stress modes versus the corresponding strain modes for three ditferent values of the volume
fraction of alumina c( 2) (0.1, 0.25 and 0.5).

Figure 6 shows a plot of the in-plane hydrostatic stress ifp versus the corresponding
hydrostatic strain f:p• when all other stress modes vanish, for the three values of the volume

4

3

2

vi" =0.35

ylZl =0.15
!-~_~__~__~_..:11:.;=:;.;5~~_~£- 1£

3 4 5' •

Fig. 7. The relations between the normal tensile stress an and strain in of the compressible laminate
(where no other stress modes are present) for three ditTerent values of the volume fraction of the

linear phase. cl1l •
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11m/Il l /) =0

vi/) =035

vi" =0.25
n=5
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0.5

Fig. ll. Th.: rdations octw.:.:n th.: transv.:rse sh.:ar stress f o and strain i'r of the compr.:ssible laminate
(wh.:re no other stress modes arc present) for three ditfer.:nt values of the volume fraction of the

linear phase. ,.'"

fraction of alumina C(:l. We observe that the laminate has a linear range with effective
modulus 2,; (recall that 'f = 9"JI/(3" +4JL)) up to yielding of the aluminum phase. However,
the laminate behaves almost linearly even after yielding with modulus approaching 2CI : 1,l:1
for large values of rip. This behavior is expected on physical grounds due to the faet that the
still'cr material (alumina) should dominate the behavior in tension (compression) parallel to
the layers. The ell'cct of increasing volume fractions of alumina is of course to stiffen the
ell'cctive behavior of the composite.

Figure 7 shows a plot of the normal tensik stress rill versus the corresponding tensik
strain i:", when all other stress modes vanish, for the three previous values of the volume
fraction of alumina C(:l. The structure of the plots is very similar to that of Fig. 6; however,
the ell'cctive moduli arc difl'erenl. Before phase I reaches yielding, the laminate has uniaxial
modulus given by the expression

[(._ ) ( "')'J I3 I 3,,-211-

31\+4p + ~ 3~+4p

whik after the yielding of phase I, the modulus for large stress a" is reduced to the h:vcl

11(1)/JlIII = 6

viii = 0.J5

vi" =025
n=5

o L..._~_......~~_"""~~_"""~~""""" Y,lyo
o 5 10 15 20

Fi\:. 9. The relations between the longitudinal shear stress f n and strain Yn of the compressible
lal~inale (where no other stress modes are present) for three ditferent values of the volume fraction

of the linear phase. c'"
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In this case. it is not evident that the linear phase should govern the effective behavior of
the laminate for large stresses. The reason. however. is the same as discussed in the previous
subsection in connection with Fig. 4: continuity of the tangential strains across the interfaces
together with the Poisson effect.

Figure 8 shows the corresponding plots for the transverse shear stress i p versus the
transverse shear strain i'p. when no other stress modes are present. for the three values of
the volume fraction of alumina. In this case. the results are similar to those of Fig. 6 for
clear physical reasons: the stiffer phase controls the behavior of the laminate under trans
verse shear loading.

Figure 9 shows plots of the longitudinal shear stress in versus the corresponding strain
mode }\. with no other stress modes present. The behavior in this case is dramatically
different. as the study of the corresponding case for the incompressible laminate demon
strated earlier (Fig. 2). Thus. after an initial linear range before yielding of phase t. the
weaker nonlinear phase governs the effective behavior of the laminate. In contrast to the
other three modes. we observe that the dependence on the volume fraction of alumina is
fairly weak. so that the three curves (corresponding to different values of C(2» are quite
close to each other.

Clearly. a study of the inter-relations between the different modes would be required
to have a complete picture of the ctfective behavior of the nonliear compressible laminate.
However. the behavior of these inter-modal relations is similar to those already explored
for the incompressible laminate. Thus. the inter-modes relations that involve the longi
tudinal shear strain i'n are of the form of the relations presented in Fig. 3 while all other
inter-modal stress/strain relations arc in the form of Fig. 5.

6.3. 71/(, rigid/perfectf.r plastic laminuted composite
In this subsection. we consider the case of an incompressible laminated composite

made up of two rigid/perfectly plastic phases with yield stresses r~l) and rh21
• chosen such

th'lt rli) < rl)11. in given volume fractions c(l) and c(2). The behavior of the phases may then
be characterized in terms of the convex energy-density functions

r. ~ r~).

r. > r\~l,
(47)

(r = I. 2). where r. denotes the effective shear stress. These energy functions may be
obtained directly from pure power-law energy functions of the form

(48)

in the limit as n -0 'YJ. Further. these energy functions define "yield functions" for the phase
materials that may be described in the usual way via

(49)

Here. we will proceed formally and make use of expression (28) to determine an
expression for the effective energy function of the laminated material O. from which we
will be able to determine a yield function for the laminated composite <1>. For a rigorous
treatment of homogenization theory for rigid/perfectly plastic composites, and in particular
for a discussion concerning the validity of the normality condition for the effective yield
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function of the composite. the reader is referred to Suquet (1985). Because of incom
pressibility and transverse isotropy. we will find t~h a yield function may be rep
resented as a curve in the (in' i)-space. where i = ,,' i~ + i~. Thus. application of (28) leads
to the expression

{
O.

where G =
x.

,III ~ ,~ll and ,(11 ~ ri,ll.

r! II > ,~I) or ,Ill > r0:\. (50.5\ )

and where rill = " '( 1- elllw)lil+ i~ and r l
:

1 = j(l +CIIIW):{ + i~.

The above optimization problem for w then reduces to determining all possible com
binations of i and in for which 0 = 0. which in turn defines the yield function for the
composite <1>. First. we note that. independent of i and (I). 0 can only vanish if

(52)

for otherwise ,I II ~ in > ':1
11

• Thus. inequality (52) is a flcccs.wry condition for C to vanish.
However. the condition (52) is not suJficient to ensure that 0 vanishes since the condition
,I 11 ~ ,h: 1 may be violated. Thus. assuming that condition (52) is satisfied. we ask the
question of whether there arc values of OJ. depending on i and in. such that conditions
,III ~ r:/ I and rl:1 ~ dl:1are satisfied simultaneously. The answer is affirmative. provided
that i and in (for given volume fractions c l

I) and elll
) satisfy the condition

(53)

Thus. conditions (52) and (53) definc an efTcL"tive yield function for the composite. <\l = O.
such that

in < ,\/1.
in = d/ I

.

(54)

We note that when ':1:1= r~/I. the expression ahove reduces to the von Mises yield criterion.
Plots of the yield surfaces in the (in. i)-space of applied stresses arc given in Figs 10

and II. Figure 10 shows the exact yield surface <Il for the choice of parametas.
,:,:1/,:,11 = 2 and el:1= 0.5. The isotropic Reuss and Voigt (also known as BishopHilJ
estimate) bounds for the yield surfaces arc also given for comparison. We note that the
exact yield surface <\l is close to the Voigt upper hounding surface <\lv for low values of the
longitudinal shear stress (in < ~,~/l). and close to the Reuss lower bounding surface <\ll{ for

r I r (J' 1.6 .--.........,---r~-,..-~-.-~-r-~.,--.--,,.--.--,
o

1.4

1.2

0.8

0.6

0.4

"-
<I'.. "-

\

\

\

<I'~. \ <I'
\

. \

'.\

'·1

I

o<-..d_
1
' ....=_O._5--,-_-'--~-'-~-'--~.L-'--''''''''''''-J ~ I r

o
l /)

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6

Fig. 10. Plots of the eX.lct estimate. the anisotropic elliptic estimalc of Hill. and the Voigt and Reuss
is;tropic estimates for the effc'Ctive yield surface of a laminated composite with r\'"/r:." = Z and

c''> = 0.5.
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Fig. II. Plots of the exact estimates (continuous lines) and the corresponding anisotropic elliptic
estimates of Hill (dashed lines) for the effective yield surfaces of laminated composites with

r:? /r:," = 1.25 .Ind three different values of c'=' (0.1.0.5 and 0.9).
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low values of f. We also include in Fig. 10 an estimate for the yield surface. cI>H. which is
based on the approximation of Hill (1951) for slightly anisotropic materials. This approxi
mate yield surface is given by

(55)

and we note that it amounts to an elliptic interpolation between the Voigt and Reuss yield
functions.

We observe that for the largely anisotropic case depicted in Fig. 10 (r:1
21 /rli l = 2 and

e'!' = 0.5). Hill's elliptic approxim,ttion severely underestimates the ultimate yield strength
of the laminated composite for comhined longitudinal and transverse loading. Figure II
shows plots of the exact yield surfaces (continuous lines) and Hill's approximate yield
surfaces (dashed lines) for a laminated composite with slight anisotropy (r\,2J/rli' = 1.25)
and three values of el21 (0.1. 0.5 and 0.9). For all values of C

121
• the cxact yield criterion

bounds a larger region of the (in. f)-plane than the Hill approximate critcrion. and the
two curves are only in good agrecment for small volume fractions of the stronger phase
(eI21 =0.1).

7. CLOSURE

In this paper. we have describcd the application ofa new variational method. developed
by Ponte Castaneda (199Ia. (992). to determine the effective constitutive behavior of
laminated composites with e1astoplastic phases in prescribed volume fractions. It constitutes
one of the first applications of the method to composite materials with anisotropic sym
metries [see also Ponte Castaneda (1992) and deBotton and Ponte Castaneda (1992) for
the corresponding results for fiber-reinforced materials]. Because of the simplicity of the
laminated microstructure. allowing for the determination of the exact effective properties
of laminated composites. this work is of interest-not only on account of its practical
significance-but also because it provides a simple case to evaluate the power of the new
method. Additionally. the results of this paper suggest that when dealing with strongly
anisotropic materials. it is flot enough to consider the behavior of the composite under
special loading conditions. since the behavior of the composite under different types of
loading conditions may be dramatically different. Thus. we found that nonlinearity high
lighted the differences in the constitutive response of laminated composites under transverse
and longitudinal shear loading. Further. this study also underlined the significant coupling
that may arise between different loading modes in nonlinear anisotropic composites. Thus.
it was found that a small fixed preload of a laminate in the longitudinal direction leads to
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continued increase of the longitudinal shear strain as the level of transverse shear stress (for
example) is increased. It is anticipated that the features uncovered by the present analysis
of nonlinear laminated composites will also be important in other types of nonlinear
composites with anisotropic symmetries. such as the practically important class of fiber
reinforced materials.
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APPE:-.iDIX A ON THE CHARACTERIZATION OF TRANSVERSELY ISOTROPIC
MATERIALS

The purpose of thIs appo:ndix is to gather some results relevant to the analysis of linearly elastIc materials
with transversely isotropic symmetry. These results are used extensively throughout the body of the paper in the
development of effective stress. strain relations for nonlinear laminated composites. The emphasis of this section
is on representations for the transversely isoropic invariants of the stress and strain tensors. The reason is that
nonlincar transversely isotropic materials are most efficiently characterized in terms of energy-density functions
depending on these invariants.

A.1. /",rTOric inl'ltrianls
[t is well known that there are three isotropic invariants for a symmetric. second·order tensor. However. only

two of these-those that arc of quadratic order. or less-are relevant to linearly elastic behavil'r. These invariants
may be e~pressed [see. for e~ample. Walpole (1981)] in terms of two fourth-order proit'crillll tensors J and K. such
that 1 = J + K. JJ = J. KK = K and JK = O. Their Cartesian components are given by

(AI)

where ,I" is the Kronecker delta symbol. Then. in terms of these projection tensors. we ddine t\\O iSl1tropic
invariants of the stress tensor via

(A2)

called the hydrostatic (mean) stress. and the eff~'Ctive shear stress. respectively. We also define the hydrostatic
strain ".n' and the effective shear strain y, by relations completely analogous to (A2)'

It is impl'rt;lI1t to note that the elasticity tensor I. I,f an isotropic. linearly elastic material admits a spectral
decomposition

I. '" .1,,:./ +2pK. (A.1)

where ./ and K pkly the role uf the eigenprojeetiuns. allli the hulk and shear muduh of the m;lterial. " allli/l. arc
the correspl1l1ding eigenvalues. As we will sec next. the situation fur transversely isotropic l1uterials is dilleren!.

A.2. rrtlll.'Tl'rst'!l· i.wrTO/Jic i""(/rillf/rs
There arc in general live transversely isotropic invariants of a symmetric. second·urder tensor (Spencer, IIn I ).

Ilowever, only fuur of these invari'IIIlS arc linear. or lJuadratie. in order. They may be represented in terms of the
fuur projectiuns tensurs [sec Walpole (191<1ll EfJl. E"I. E"" ;lIld 10:1". satisfying the relations .:II'IEII'I = E"'I;
E"'II·:I." ~ n. I' F 1/; and EIIJ + Ef!1 +EIII + EI" = I. The components of these four projections lensors arc given
respect ively hy

E!,'L = J(fl..tl" +11"11,, -IJ.1P"l.
£!:L = l<!1"(J",+IJ,,It,. +{J"It., + {JI'7.,,). (A4)

when: %., = ".n, and II" = '),,-",",. with n denoting the axis of transverse isotropy. Then. the four transversely
isotropic invariants of the stress tensor tI may he expressed in the forms

<1. = lE!,~I,<1<J = j<1"I1". (l(<1, , +<1,,);,

(In -= E!j~I'O'41 = f11/~'J' [tJ JJ }.

r~ = 1<1" £!,'I,<1" = j[<1"t1"IJ"IJ., - 1(t1"II.,)' I. {t1; 2 + 1(<1" - <1,,)'}.
r,; = lt1,.£!:L<1" = [t1,,<1.,%,.-(t1.}7.,,)2J. {(<1;,+t1i,l:. (AS)

which correspond physically to the in-pl;.ne hydrostatic stress. the normal tensile stress. the (in-plane) transversI:
shear stress. and the (anti-phlne) longitudinal she"r stress (given in brackets arc the corresponding representations
for a choice of n ;.Iigned with the 3-direction). Analogous relations apply fur the transversely isotropic invariants
of the strain tensor r.. denoted rcs~'Ctively r.p _ tn' IP and 'n' We also note for Jailer refereneo: that the following
two rehltiuns hold bet\H.-en the transversely isotropic invariants of (AS) and the isotropic invariants of (A2).
namely.

(M)

Contrary to the situation for isotropic materials. the above rour projection tensors arc not the eigentensors
of the sp..'Ctral d~'Composition of an arbitrary transversely isotropic material (Mchrabadi and Cowin. 1990). Such
eigentensors would unfortunately involve the material moduli. Therefore. it is necessary to introduce [s~'C Walpole
(19SI )1 two other tensors. that arc 1101 projections. EI'I and EIA'. with components

SAS 29:19-C
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(A7)

Then. the elasticity tensor L of an arbitrary transversely isotropic material may be expressed in terms of these SIX

tensors. It is worth mentioning that the above tensors satisfy the relation

(A8)

and that we can additionally define for later reference an additional tensor E' such that

(A9)

This last tensor is a projection tensor. which is orthogonal to E[ll and EI'I.

Finally, we remark that the energy density function of a transversely isotropic. linearly elastic material may
be represented in the form

(AIO)

where'" is a quadratic function. Then. the relation between the transversely isotropic stress and strain invariants
is given by

and (All)

A .J. [ncompr/'ssihlt" Iran.n·/'r.n·/y isolropic im'ariants
For incompressible. transversely isotropic materials. it sullices to consider the three invariants of order less

thim quadratic on the space of traceless. symmetric. second-ordcr tensors. These may be obtained in terms of the
three orthogonal projection tensors EI'I. EI41and E'. defined in the previous subsection. Thus. the incompressible.
transversely isotropic invariants of the stress tensors a are rp • r n • and the deviatoric shcar stress

(AI2)

corresponding to the thrL'C above projL'Ctions. respectively. We note further that from (A6), we have the following
identity rehlting the effective shear stress and the iOl:ompressible. transversely isotropic invariants,
r; : r; + r~ + ri. The corresponding strain invariants arc denoted by yp, y" amI I'd-

Finally. we note that the elasticity tensor L of an incompressible. transversely isotropic, linearly clastic
material admits a spectral decomposition of the form

(AD)

where I'p. It", It", arc the three shear moduli that sullice to characterize the behavior of such a material [see Lipton
(199Iall·

APPENDIX B: A USEFUL IDENTITY

In [his appendix. we demonstrate the following identity. which is used repeatedly in the body of the paper,
namely

I { " c'" }.. = min L --;-(w''')' ,
~ u,!,l.uJo_1 ,. I ~( )

where the variables :x'" > 0 (r = I..... n) arc constant. and where the variables w'" (r =
the constraint ,ii = I.

We begin by letting.tl be the function dcfined by

(BI)

I..... n) are subject to

(B2)

The choice of the set. w'" = :x"'/i. satisfies the constraint and is such that g(w"') = l/i. Consider next a second,
arbitrary set. distinct from the first set. "j'" (r = I.... , n), such that ,!i = I, and let 0'" = ,jJ"'-w"'. Then,
substitution of this second set into (B2) leads to

(B3)

where we have used the fact that tJ = O. Hence. identity (B I) is demonstrated. In the body of the paper. we replace
w'" by (I -w'''). with an appropriate modification for the constraint.
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APPENDIX C: A SIMPLIFIED EXPRESSION FOR THE EFFCTIVE STRESS/STRAIN
RELATIONS
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Consider the following form for the effective energy function (26) of the incompressible laminated composite

(CI)

where

As shown in the body of the paper. we can eliminate the constraint w= 0 by letting

(C2)

and rewriting (CI) in terms of the /I-I optimization variables Wi" (r = 1, ...• /I-I) via

(C3)

where the variables r'" (0< = I.., .. /I - t) are the same as before. but on the other hand

J
-.----~.

I 0-' Z

r 'o' = ({Z+iZ)(I+_ ~ ci"W''') +izr ,I .tlt' '- n'
( t_ J

Then. the /I -I optimiz;ltion conditi<lOs of (CJ) are given by the relations

(C4)

If we now denote the optimal variabll:s w"'. satisfying (C4). by (J'P' (r = I., .. . /1- I). the elTt:ctive energy
fUllction of thc incompressible laminate may then be written in the form

where

. ,
0(") = L ("·'l/i"W·')+c'·'l//·'(i'O')..-, (CS)

It follows that c:lTective stress/strain relations of the laminated composite may be computed from the relations

(C6)

We note that each of the terms in the last summation of (C6) is identical to zero by virtue of the optimizations
conditions (C4). Thus. in the computation of the effective stress/strain rel;llions. we may regard the optimizations
variables as constants as far as derivatives with respcctto if arc concerned. to obtain the final TOIl'UIt

(C7)

where oj'" is defined via the relation (e2) in terms of the other w'" (r = I..... /I-I),
It can be shown that an analogous result may be obtained for the nonlinear compreuihte composite with

effective energy function 0 given by (37). In fact. we may write the effective stress/strain relations for the nonlinear
compressible laminate in the form
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i = (Oil

where :;". and Ii:';' are evaluated from (36) at the optimal values pf w;·'. and I'J:';'. denoted by I'j~". and
respectively. Here. the derivatives with n:spect to the average stress ir are evaluated with (.j;". and uj:';' fixed.

APPE:s.iOL\ 0: A:" ALTER:"ATIVE OERIV.-\nO)\; OF EXPRESSIO:s.i (37)

"I"'
U)m'

Having obtained e.\pressions (35) and (371 for the elfect"e energy functions of the hnear and nonhnear
laminated composites l..7" and C. respectively. we note that the foml of these expressions is reminiscent of the type
of result that one would expect from direct utilization of the principle of minimum complementary energy (4). In
this appendix. we briefly show that results (35) and (37) for (" and C. respectively. can indeed be alternatively
obtained from the principle of minimum complementary energy. It is important to emphasize. however. that while
the derivations given in the body of the papet result from straightf,'mard Cl)mputations. the present derivations
based on the principle of minimum complementary energy rely nwre directly ,In the physics of the problem. and
were "'(IIiI'll/eel by the prwr derivations. Additionally. the case of a lammated composite is a very special
microstructure: in general. we do n(l/ expect that we will be ahle tll use the appn'ach of this appendix for nonhnear
Cl'mposites with more general anisotropic microstructures.

We begin with the derivation of the hnear result (.15) Wc have alreadv mentipned that the stress field within
the laminated composite is pieceWise constant. I.e. PI' the fllrm -

(f \~ ;(·'('·II)(f···.
,.~ I

whcre (f'" cllrrcspllnds tp the Cllnstant stn:ss licld in phase r. The prohlem then redul'es til that of finding these
unknllwn phase stresses (f"'. t(lgethcr wilh Ihe cllrrespllndlllg cllnst'lllt strain lields c'" (relatcd til the stresses hy
thc phase cllnslitutive relatillns). and satisfying the cllnditillns Ill' cllntinuity of the tractilln stresses and tangential
strains across the interfaces hetween the phases. as well as the a\cLlging cpnditions stated in Section ~.

In this conncctipn. thc interior amI extenpr prpjection operators (If II ill (I'n~. 191'.1) F.= EIII+EI'I and
E = 1-: 1'1 ~ Eill (refer III Appendi.\ Al. respectively. turn put til be useful hecause they allow the decomposition of
any symllietric. secllnd-order tensor Into its tangential (Illtenor) and tractilln (exterior) components (with reference
to a houlllbry with normal 11). Thus. the tangenlial components PI' the strain (which must be eontinupus across
intcrf'ltial houndaries on the laminated compoSite) are given hy Fr.. ,wd. corrl·spondingly. the traction components
Ill' the stress (which must also hc cOlltlnuous across the inter!';"lal houndaries) arc givcn hy E(f. Alternatively. we
may state that EI;I(f. EI'I(f and Elllr.. EI'Ir. must also he continuous across such houndaries.

Next. we apply the ahove results to the laminated composite. for which the inlerf:leial houndaries arc all
perpendicular to a fixed vector 11. Since the traction stresses must he coutinllllus from phase to phase. we have
that

(DI)

where we have additionally made lise or the average stress condition given in Section ~. We continue hy noting
that ror an isotropic material (as arc all the phases in the ollr laminate). EI '~(f'" = ~II::'EI 'Ir.'" within each linear
phase. and therefore ror an isotropi..: phase the EI'I projection or the stress tensor must have the same dire..:tion
in all phases. Thus, applying the averaging condition r(,r the stresses. we arrive at

(D2j

where the variahles w;" must satlSry the condition that oi, .~ O..·\dditionally. since the EIII-proJe..:tion is one
dimensional. it rollows that the El11-projections or the stress telbor mllst also he parallel from phase to phase.
Thererore. applying the averaging ..:ondition ror the stresses. we have that

where the variahlcs w:~' mllst satisfy the ..:ondition that f~)... = O. We note. however. that if Ellia = 0 (or. e4l1ivalcntly.
ir Be = OJ. the above result docs not hold. hecause in this ..:ase the corresponding projections of the stress in the
ph'lSes need not v.mish (only their average needs III vanish).

Applying the results of Appendix A [in parti..:ular. (:\hl!. we conclude that the isotropic invariants or the
stress tensor within each phase r;" and (f~) (on which the energy density functions of each isotropic phase depend)
arc precisely those given hy relations (36). Therefore. it follows from the principle or minimum complementary
energy-hy minimizing over the set or admisslhle stresses (i.e. over the optimizing variahles ltJ;" and w:';' suhject
to the constraints (il, = 0 and (il.n = OJ-that the ctfective energy runctilln Coo of the linear composite is intked
given hy expression (35).

For the nonlinear laminated composite. we observe that the same analysis given ahove would also work.
leading to expression (37) for C. The only modification that is re4uired in this analysis is th,lt for a nonlinear
isotropic phase (say phase r). the relation EI'l a '" = ~I,:;'EI 'ir.'" would not hold. but it can he easily shown that
for the nonlinear isotropic material or the type considered in this work. the conclusion (02) would still hold. and
hence the final form ror () would be the same as that ror the linear laminated composite 0 0 ,

We conclude this appendix hy stating an alternative form or (35) and (37) that works even when 11. = n. This
is accomplished hy redetining the optimizing variahlcs ,,)~. in ternh or the new variahIes
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(04)

where we now need to have ap-a. # o. In terms of the new variables w~J (the variables w~'J do not change),
relation (37) is e:\pressed in the form

min

where

{±CI'I""'J(t~",a~I)}.
")~".UJ~l ,_ I

...\"",.';",-1)

(05)

Note that when ap= Ii. = O. we are guaranteed that I1~J = I1~J = 0 in each phase. and then both forms are equally
valid.


